
EE4306 VHDL Assignment

Reaction Timer

Sven Richter (0416977629)

September 13, 2004

Contents

1 Introduction 2

2 Principles of operation 3

2.1 The states . 3
2.1.1 State 0 - Waiting for reset 4
2.1.2 State 3 - Generate random number 4
2.1.3 State 2 - Delay . 4
2.1.4 State 1 - Reaction test . 4

2.2 The program . 4
2.2.1 Main module . 4
2.2.2 Decimal counter and seven-segment-display 6

3 Results of simulation 7

3.1 SevSegDec . 7
3.2 DecCounter . 8
3.3 ReactionTimer . 9

A Source code 12

A.1 ReactionTimer . 12
A.2 DecCounter . 15
A.3 SevSegDec . 16

1

1 Introduction

The task was to design a reaction timer which has to fit into the MA4A5 Lattice
development boards. The particular features of these boards are that they have
three buttons and four seven-segment-displays which can be used to realize the
project.

The button SW1 should clear the display and has to start the process. Af-
ter the RESET button has been pressed the system is supposed to have a four
to eight seconds delay (during that the displays stays unchanged) before actu-
ally starts counting. As soon as the STOP button (SW3) is pushed the counter
freezes the display to show the reaction time.

The display is driven by a 2 kHz clock but the reaction will be shown in mil-
liseconds. If it happens that no one pushes the STOP button the timer tops up
to ”9999” and after that goes back to ”0000”.

2

2 Principles of operation

I decided to use states to realize the reaction counter. To design the program in
such a manner gave me the opportunity to define specific events in every state
which will trigger a change to the next state without having any effect on it .
This rule forces every function to run only in the current state and prevents it
from interaction with any other part.

In the next section I will give a short overview over each state and describe
his basic functionality and the transition needed to change to the next state.

2.1 The states

Figure 1: States

3

2.1.1 State 0 - Waiting for reset

In this state the board will wait till a user presses the RESET button to start the
whole cycle. State zero is the first state the board will be in after it is powered on
and it will be the state the program changes to after the reaction test is finished.

The only thing which does happen in this state is to show the reaction time
result in the seven-segment-display. If it has just been powered on it will show
”0000” because nobody did a reaction test and therefore the measured time is
zero. The same result will appear if nobody stops the timer before it reaches
then seconds.

2.1.2 State 3 - Generate random number

This state measures the time the RESET button is pressed and uses it as a
random delay in the next state. Therefore the system will jump into state three
after the RESET button is released. Furthermore, the display will be reset to
”0000” during this state if any different time is shown on it.

2.1.3 State 2 - Delay

In this state the timer (COUNTDELAY) which was destined in state three will
count down. This produces a delay until the test actually starts. When the
COUNTDELAY reaches zero it changes to state one.

2.1.4 State 1 - Reaction test

This is the state for the test itself. During the test the seven-segment-display
will count up in milliseconds to show the time which has passed. If the user
presses STOP the display will freeze and the program will change to state zero.

If the user does not hit the STOP button during the time the four displays
need to count up to nine (9.999 seconds) the reaction test will also be stopped
and the display will be reset to ”0000” and the state will change to zero.

2.2 The program

In figure 2 you can see the schematic design of the VHDL program. The source-
code of all three modules is attached in the appendix.

2.2.1 Main module

The main module ReactionTimer (section A.1) does the main function of the
VHDL program. It switches between the states which are briefly described in
section 2.1. To check the conditions for a change from one state to another it
uses the the RESET and STOP input which are connected to pin 31 (SW3 -
STOP) and pin 9 (SW1 - RESET). It also uses the clk input (pin 11) to measure
the time the RESET button (SW3) is pressed (in state 3, section 2.1.2) and to
count the delay (state 2, section 2.1.3) down.

4

Figure 2: Program design

5

To generate a random number for the delay the time the RESET button is
pressed is meassured. To do this the bits 4 to 12 of COUNTDELAY are used.
Because this is a 9 bit counter it needs about 1

4
of a second (1

2kHz
(29

− 1) =
0.255sec) to be back at zero. As the maximum time the RESET button is
pressed is assumed to be about 0.5 seconds, it should give us a random number
of a haphazard value. Any difference of 0.5 milliseconds in the pressing time
will thus result in a change of the delay time of 16 milliseconds.

To ensure a minimum delay of about four seconds the most significant bit of
COUNTDELAY is set to one (1

2kHz
213 = 4.096sec). Then in state two (sec-

tion 2.1.3) after the RESET button is released COUNTDELAY starts counting
down till it reaches zero and initiate the start of the reaction test.

2.2.2 Decimal counter and seven-segment-display

The decimal counter, DecCounter module (section A.2), is driven by a 1 kHz
clock (MYCLK) which is simply the system clock (CLK) divided by 2. Therefore
MYCLK is inverted every time CLK has a rising edge. In contrast to most of
the common counters the decimal counter does not work on the rising edge of a
clock signal but counts up on the falling edge. This makes it possible to connect
the next decimal counter on the most significant bit of the four bit count output.

The decimal counter has also a run and reset input. If the reset is equal one
the counter will reset its output to zero even if the clock signal does not change.
But if the run signal is not set to true the counter will freeze the current counted
number even if the clock signal changes. These inputs make it possible to con-
nect the counter to a steady clock signal and direct to the corresponding seven
segment display drivers. Every DecCounter module is plugged to one SevSegDec
module (section A.3) which itself is connected to a seven-segment-display, there-
fore all counted values will be directly shown on a display. Because the counter
is driven by an 1 kHz clock the displayed time is given in milliseconds.

The run and reset inputs of the counter are equal to the current state so they
are connected and produce the expected result. In state three (section 2.1.2)
and state two (section 2.1.3) the display is reset, in state one (section 2.1.4) the
clock runs and in state zero (section 2.1.1) it is stopped and shows the measured
time.

6

3 Results of simulation

To ensure that the program is working I first tested both single modules and
afterwards the complete program. To produce these waveforms the code was
changed twice to make the delay displayable. Both changes are done in the
ReactionTimer module (section A.1) and commented. First, not tie bit 4 to 12
of the COUNTDELAY but the bit 0 to 9 are used to measure the time RESET
is pressed. Second, the most significant bit of COUNTDELAY was not set to
one.

3.1 SevSegDec

Figure 3: SevSegDec waveform

The waveform of the seven-segment-display driver is shown in figure 3. For
each value of the 4 bit input the display driver gave an output value. Because
of a decimal bus radix it showed the decimal representation of the output bit
sequence which will show the number in the display (see following table)

7

input bit sequence decimal value
0 0000001 1
1 1001111 79
2 0010010 18
3 0000110 6
4 1001100 76
5 0100100 36
6 0100000 32
7 0001111 15
8 0000000 0
9 0000100 4

It should never occur in the running program that the input becomes greater
than 9 but I wanted to check if the display will, as expected, show the zero in
such a case.

3.2 DecCounter

Figure 4: DecCounter waveform

The resulting waveform for the decimal counter test is shown in figure 4. It
behaved like expected: counted up at the falling edge of the clock from 0 to 9,
reset if reset is equal one and only counted if run is true. If run and reset were
zero it held the current value.

8

3.3 ReactionTimer

Figure 5: ReactionTimer waveform - complete run

In figure 5 the complete cycle is shown. You can see how the change from
one state to another is performed if the conditions complies.

In figure 6 the random number generation process is shown. It started when
RESET was pressed and changed the state from state zero to state 3. Ones
sees how COUNTDELAY counted up as long as the RESET button is pressed
and how the state changed from three to two when it was released. In state
two COUNTDELAY counted down. How it reached zero is shown in figure 7. I
have added a low pulse for the STOP button to simulate that the user presses
this button during the delay to test if it has any effect. As expected this does
not change anything.

The real program would need much more clock cycles to reach this state but
because two lines of code were modified for the waveform test it was displayed.

When the system reached state one the test started till the RESET button
was pressed. One can see how the seven-segment-display starts counting up.
I have stopped the test very soon because the SevSegDec module was already
been tested but one can see how the divided clock signal triggered the first
counter and the first counter the second one.

9

Figure 6: ReactionTimer waveform - countdelay counts up

Figure 7: ReactionTimer wavefrom - delay and test

10

After the STOP button was pressed the system entered state zero again and
the display still showed the measured time. I did not want to test if the display
reset to zero after 10 seconds as a waveform because this would need to many
clock cycles to be reasonable. It was quite better to test it on the Lattice test
board itself, because there I could let the timer run to 9900 and then changed
to a slower clock frequency. And it did work as expected.

11

A Source code

The source code compiles perfectly on the Simplify compiler and just returns
an expected warning that a few inputs are set to ”don’t care” and therefore are
not set with a discrete value. But I have expected it because I defined that it
should do that in the optimization constrains.

A.1 ReactionTimer

−−

−− File: reactiontime.vhd
−−

−− Assignment 2004 Semester 2
−− Sven Richter (0416977629)
−−

−− Reactioncounter .. after reset (sw1) starts
−− the clock till sw3 is pressed and shows the
−− passed miliseconds in the seven segment
−− display (decimal)
−−

−− It uses deccounter for decimal counting
−− and sevensegdec for dispalying
−−

−−

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity ReactionTimer is

port (clk: in std logic; −− 2 kHz clock
reset :in std logic; −− the reset button
stop :in std logic; −− reaction meassure button
SevSeg0 :out std logic vector (6 downto 0);
SevSeg1 :out std logic vector (6 downto 0);
SevSeg2 :out std logic vector (6 downto 0);
SevSeg3 :out std logic vector (6 downto 0)

);

attribute loc: string;
attribute loc of clk: signal is ”P11”;
attribute loc of stop: signal is ”P31”; −− button SW3
attribute loc of reset: signal is ”P9”; −− button SW1
attribute loc of SevSeg3: signal is ”P2 P3 P4 P5 P6 P7 P8”;
attribute loc of SevSeg2: signal is ”P14 P15 P16 P17 P18 P19 P20”;
attribute loc of SevSeg1: signal is ”P24 P25 P26 P27 P28 P29 P30”;
attribute loc of SevSeg0: signal is ”P36 P37 P38 P39 P40 P41 P42”;

end;

12

architecture ReactionTimer arc of ReactionTimer is

component DecCounter
port (clk :in std logic; −− the clock signal

run : in std logic;
reset: in std logic;
count :inout std logic vector (3 downto 0) −− the output value

);
end component;

component SevSegDec
port (decin:in std logic vector (3 downto 0);

SevSegOut :out std logic vector(6 downto 0)
);

end component;

signal state : std logic vector (1 downto 0) := ”00”; −− tells which state it is in and
sets the

−− the run and reset of the deccounter
signal countdelay: std logic vector (13 downto 0); −− counter of the delay should be

enough for max 8 second on 2khz
signal countSevSeg: std logic vector (15 downto 0); −− the counter result for the

cascaded decimal counter

signal myclk: std logic; −− the clock for the decimal counter 1/2*clk = 1 khz ..
for useless count result

begin

−− map the dec counter to the seven segment displays
D0: SevSegDec port map (countSevSeg(3 downto 0), SevSeg0);
D1: SevSegDec port map (countSevSeg(7 downto 4), SevSeg1);
D2: SevSegDec port map (countSevSeg(11 downto 8), SevSeg2);
D3: SevSegDec port map (countSevSeg(15 downto 12), SevSeg3);

CD0:DecCounter port map (myclk, state(0), state(1), countSevSeg(3 downto 0));
CD1:DecCounter port map (countSevSeg(3), state(0), state(1), countSevSeg(7 downto

4));
CD2:DecCounter port map (countSevSeg(7), state(0), state(1), countSevSeg(11 downto

8));
CD3:DecCounter port map (countSevSeg(11), state(0), state(1), countSevSeg(15 downto

12));

run: process begin

wait until rising edge(clk);

−− produce the clock for the Decimal Counter
−− os one clock puls is a millisecond
myclk <= not myclk;

−− decide what to do dependend on the current state
case0: case state is

13

when ”11” => −− we produce the random number
if (reset = ’0’) then −− reset button pressed
−− counter needs 1/4 second to recycle
−− should be randon enough
countdelay(12 downto 4) <= countdelay(12 downto 4) + ”000000001”;
−−countdelay(9 downto 0) <= countdelay(9 downto 0) + ”0000000001”;

−− use for testing
else

−− put a one into the most significant bit to
−− ensure at least a 4 seconds delay
countdelay(13) <= ’1’; −− remove for testing
state <= ”10”; −− next step

end if;
when ”10” => −− use the random number and count down

if (countdelay > ”000000000000”) then

countdelay <= countdelay - ”0000000000001”;
else

state <= ”01”; −− next step
end if;

when ”01” => −− measure the time and show it
if (countSevSeg(15) = ’0’ and countdelay(0) =’1’) then

−− if the counter reaches 0000
state <= ”00”;

elsif (stop = ’1’) then

−− to remember is countSevSeg was 999
if countSevSeg(15) = ’1’ then

countdelay(0) <= ’1’;
else

countdelay(0) <= ’0’;
end if;

else

−− if the users presses stop
state <= ”00”;

end if;
when others =>

if (reset = ’0’) then −− wait until rest ist pushed
state <= ”11”; −− start again

end if;

end case case0;
end process run;

end ReactionTimer arc;

14

A.2 DecCounter

−−

−− File: deccounter.vhd
−−

−− Assignment 2004 Semester 2
−− Sven Richter (0416977629)
−−

−− a decimal counter
−−

−−

library ieee;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;

entity DecCounter is

port (clk :in std logic; −− the clock signal
run : in std logic; −− 1 - run, 0 - stop
reset : in std logic; −− if ’0’ reset the counter

−− carry: out std logic; −− carry out if back to zero
count :inout std logic vector (3 downto 0) −− the output value

);
end;

architecture DecCounter arc of DecCounter is

begin

run: process(run, clk, reset) begin

if (reset = ’1’) then

count <= X”0”;
elsif (falling edge(clk)) then

−− had to cascade because leonardo wants the
−− clk statement allone
if (run = ’1’) then

if (count < X”9”) then

count <= count + X”1”;
else

count <= X”0”;
end if ;

end if;
end if;

end process run;

end DecCounter arc;

15

A.3 SevSegDec

−−

−− File: sevsegdec.vhd
−−

−− Assignment 2004 Semester 2
−− Sven Richter (0416977629)
−−

−− just a simple Module to show a decimal
−− value at the Seven Segment Display
−−

−−

library ieee;
use ieee.std logic 1164.all;

entity SevSegDec is

port (decin:in std logic vector (3 downto 0);
SevSegOut :out std logic vector(6 downto 0)

);
end;

architecture SevSegDec arc of SevSegDec is

begin

process (decin) begin

case0: case Decin is

−− need to have inverse output because
−− the driver negates it
when X”1” => SevSegOut <= ”1001111”; −− 1
when X”2” => SevSegOut <= ”0010010”; −− 2
when X”3” => SevSegOut <= ”0000110”; −− 3
when X”4” => SevSegOut <= ”1001100”; −− 4
when X”5” => SevSegOut <= ”0100100”; −− 5
when X”6” => SevSegOut <= ”0100000”; −− 6
when X”7” => SevSegOut <= ”0001111”; −− 7
when X”8” => SevSegOut <= ”0000000”; −− 8
when X”9” => SevSegOut <= ”0000100”; −− 9
when others => SevSegOut <= ”0000001”; −− 0

end case case0;
end process ;

end SevSegDec arc;

16

