
Experiment E4303

Asynchronous Sequential Logic and VHDL

Sven Richter

September 9, 2004

Contents

1 Introduction 1

2 Design 2

3 Realization and testing 8

3.1 Part A . 8
3.2 Part B . 11

A Sourcecode 14

A.1 mixer . 14
A.2 divide100 . 15
A.3 circmixer . 16

1

1 Introduction

The aim of this practical is to reinforce the Asynchronous Sequential Logic
design procedures and to provide some experience at realizing these circuits
in CPLD.

Task

Part 1: Design the sequential logic circuit for a digital phase modulater or
digital single sideband mixer, with the waveform shown in figure 1. Ensure
that all possible transitions are specified. (The frequency of signal A is much
higher than that of signal B.)

Figure 1: Digital Mixer waveforms.

Realize the circuit using VHDL, fully test the circuit by observing the
waveforms.

Part 2: Write the VHDL code for a divide by 100 circuit and test your
code by observing the waveforms. Combine the code for these two circuits
into one VHDL module, such that the Output from the digital mixer is used
as clock (ie input) for the divider. This combined logic can then form the
basis of a PLL circuit.

1

2 Design

To design the digital phase modulator it is necessary to regard all states and
transitions the circuits can change to. Therefore, the waveform from figure 1
must be extended to figure 2. In the new waveform all states and transition
are noted to which the circuit could change. To fill them in, reasonable
assumptions where made.

Figure 2: Digital Mixer waveforms with states.

AB
00 01 11 10 00 Out

1 ↔ 8 → 4 ↔ 7 → 1 0
↗↙ ↗↙

6 ↔ 3 ← 5 ↔ 2 ← 6 1

Table 1: Logic Signal Flow Graph

With all states defined is is possible to create the Logic Signal Flow Graph
which is shown in table 1. Here all stables states occur and the transition
between them is marked by an arrow.

From this Flow Graph the Primitive Flow Table can be developed. It is

2

shown in table 2.

AB
00 01 11 10 Out

1 8 2 0

1 5 2 1

6 3 4 1

3 4 7 0

3 5 2 1

6 3 2 1

1 4 7 0

1 8 4 0

Table 2: Primitive Flow Table

The Bold numbers, in the boxes, in the Primitive Flow Table are stable
states. All other numbers describe transitional states and unfilled cells are
don’t cares.

In this table it is easy to locate states which can be merged. As a result
the merger Diagram (figure 3) is synthesized. In the Merger Diagram states
that can be merged are connected by a line.

Therefore, two possible ways to merge the states exist:

1. 1 with 2, 5 with 6, 3 with 4, 7 with 8

2. 2 with 5, 6 with 3, 4 with 7, 8 with 1

The second merging possibility has much easier output coding but will
lead to much more complicated boolean expressions. Therefore the first one
will be used for all further design steps.

The results from the second merging possibility are not shown here to keep
clearness.

3

Figure 3: Merger Diagram

AB
00 01 11 10 Out

1 8 5 2 0/1

6 3 4 7 1/0

6 3 5 2 1

1 8 4 7 0

Table 3: Merged flow table

The resulting Merged flow table is shown in table 3. In this table all sta-
ble states also marked bold and got a frame. All other states are transitional
states and don’t cares do not exist.

But this table contains a critical race condition in column three (AB = 11)
and four (AB = 10). For example if the circuit is currently in the stable
state eight and the input changes to ”11” it will change to the transitional
state four but to reach the stable state four it would have to go over the
stable state five or the transitional state five. The similar problem occurs by
transition from state two to state five and so on.

To solve this problem and to remove the critical race condition it is required
to swap row two with row three. The resulting Merged flow table without

4

the critical races is shown in table 4.

AB
00 01 11 10 Out

1 8 5 2 0/1

6 3 5 2 1

6 3 4 7 1/0

1 8 4 7 0

Table 4: Merged flow table without critical race

From the Merged Flow table the Excitation Matrix (table 5) is con-
structed. Two output variables f and g are introduced because the Merged
Flow table consists of four rows so a two bit value is needed.

All stable states are replaced by the corresponding value of the output vari-
ables. Therefore the values for the transitional states is known too and is
replaced.

AB
00 01 11 10 fg

00 10 01 00 00

01 11 01 00 01

01 11 11 10 11

00 10 11 10 1 0

Table 5: Excitation Matrix

From the Excitation Matrix can the Karnaugh maps for F (table 6) and
G (table 6) be build.

5

AB
00 01 11 10 fg
0 1 0 0 00
0 1 0 0 01
0 1 1 1 11
0 1 1 1 10

Table 6: Karnaugh map for F

AB
00 01 11 10 fg
0 0 1 0 00
1 1 1 0 01
1 1 1 0 11
0 0 1 0 10

Table 7: Karnaugh map for G

Out of the Karnaugh maps the boolean expressions for F and G are
calculated as followed

F = AB ∨ Af (1)

G = Ag ∨ AB (2)

AB
00 01 11 10 fg
0 0 1 1 00
1 1 1 1 01
1 1 0 0 11
0 0 0 0 10

Table 8: Karnaugh map for out

Because, of the choice for the first possibility to merge, it is also needed
to calculate the output value ”out” of the Inputs A and B and the values of
f and g. The Karnaugh map for ”out” is shown in table 8.

This resulting expression is:

out = Ag ∨ Af (3)

6

To build the circuit with NAND’s it is needed to solve equations 1, 2 and
3 as bellow:

F = AB ∧ Af (4)

G = Ag ∧ AB (5)

out = Ag ∧ Af (6)

Now the network can be created and it is shown in figure 4.

Figure 4: Circuit

To prevent static hazards in the circuit it would be better to derive a
little bit more complex expression for F,G and out for a practical realization.

F = AB ∨ Af ∨Bf (7)

G = Ag ∨ AB ∨ Bg (8)

out = Ag ∨ Af ∨ fg (9)

But because of the VHDL compiler which will just remove this additional
terms it is easier use the simple one’s to implement in VHDL and it will not
change the results of the testing.

7

3 Realization and testing

3.1 Part A

The circuit was realized in VHDL and the sourcecode can be found at section
A. All Boolean equations for F and G are programed in the mixer module
(section A.1). To generate the expected output it is necessary to implement
also the Boolean algebraic expression for ”out”, this is done in module cir-
cmixer (section A.3).

In the version of the circmixer module provided in the appendix the di-
vide100 module (section A.2) is used too and is connected to the output of
the phase-mixer. But this will be discussed in Part 2.

To test the mixer module it was neccessary to add an additional signal ”rst”
on the circuit, to reset the initial values. This is not needed if the program
is written into an real processor but mandatory for testing.

A abel test vector was created to test the mixer module. This vector did
contain all possible transitions to produce an error message in the simulation
window if any expression are not correct.

Test_vectors

([siga,sigb,rst] -> [sigout])

[0,0,0] ->[0]; //6

[1,0,1] ->[1]; //2

[0,0,1] ->[0]; //1

.....

[0,0,1] ->[1]; //6

[1,0,1] ->[1]; //2

END

The test did run without any errors and the result is shown figure 5 and
figure 6 is the resulting waveform.

Additionally, I generated a waveform similar to figure 1 to compare the
designed circuit with the requirements expressed in the task formulation.
Figure 7 does show this one and the result of the test. They are both similar.

8

Figure 5: Test-Vector result

Figure 6: Test-Vector waveform

Figure 7: Waveform

9

3.2 Part B

The VHDL code for the the divide by 100 circuit is attached in section A.2.
It is a simple counter which counts fifty clock pulses and switches then the
output. It was tested completely and behaved like expected. The results can
be seen in figure 8, 9 and 10.

Because there was no EPLD test board available as the code was finished it
was not possible to test it on an real device. But If it can be assumed that
the signal A, like described in the task formulation, has a very high frequency
compared to signal B the circuit will end up with a nearly stable clock signal.
Only if signal B starts to change very often it can change the frequency of
the output signal more significant.

A simulation of the complete program was done and the results are shown
in figure 11 and 12.

10

Figure 8: Divider waveform - full

Figure 9: Divider waveform - begin

Figure 10: Divider waveform - end

11

Figure 11: Divider + mixer waveform - full

Figure 12: Divider + mixer waveform - center

12

A Sourcecode

A.1 mixer

1 −− Experiment E4303

2 −−
3 −− file: mixer.vhd

4 −− author: Sven Richter

5 −−
6 −− digital phase mixer

7 −−
8
9
10 library ieee;
11 use ieee.std logic 1164.all;
12
13 entity mixer is

14 port (A,B,rst :in std logic;
15 −− rst is just to be able to simulate

16 Fn,Gn :buffer std logic
17);
18
19 end;
20
21 architecture mixer arc of mixer is

22
23 attribute syn keep : boolean;
24 signal F,G : std logic := ’0’;
25 attribute syn keep of F,G : signal is true;
26 begin

27 run: process(A, B, F, G) begin

28 Fn <= ((not A) and B) or (A and f);
29 Gn <= ((not A) and G) or (A and B);
30 end process run;
31
32 outrun: process (Fn, Gn) begin

33 F <= Fn and rst;
34 G <= Gn and rst ;
35 end process outrun;

13

36
37 end mixer arc;
38

A.2 divide100

1 −− Experiment E4303

2 −−
3 −− file: divide100.vhd

4 −− author: Sven Richter

5 −−
6 −− Divider 1 by 100

7 −−
8
9 library ieee;
10 use ieee.std logic 1164.all;
11
12 entity divide100 is

13 port(clk :in std logic;
14 sigout :inout std logic
15);
16 end;
17
18 architecture divide100 arc of divide100 is

19 signal counter : integer range 1 to 50;
20 begin

21
22 run: process begin

23 wait until rising edge(clk);
24 if (counter < 50) then

25 counter <= counter + 1;
26 else

27 counter <= 1;
28 sigout <= not sigout;
29 end if ;
30
31 end process run;
32
33 end divide100 arc;

14

34

A.3 circmixer

1 −− Experiment E4303

2 −−
3 −− file: circmixer.vhd

4 −− author: Sven Richter

5 −−
6 −− the complete circus to

7 −− do the asynchron logic

8
9
10 library ieee;
11 use ieee.std logic 1164.all;
12
13 entity circmixer is

14 port (siga, sigb,rst : in std logic;
15 sigout : inout std logic
16);
17
18 attribute loc : string;
19 attribute loc of rst: signal is ”P16”;
20 attribute loc of siga: signal is ”P15”;
21 attribute loc of sigb: signal is ”P17”;
22 attribute loc of sigout: signal is ”P29”;
23
24 end;
25
26 architecture circmixer arc of circmixer is

27 component mixer
28 port (A,B,rst :in std logic;
29 Fn,Gn :buffer std logic
30);
31 end component;
32
33 component divide100
34 port(clk :in std logic;
35 sigout :inout std logic

15

36);
37 end component;
38
39 signal sigf, sigg, sigmixer : std logic ;
40
41 begin

42 m0: mixer port map (siga, sigb, rst , sigf, sigg);
43
44 d0: divide100 port map (sigmixer, sigout);
45
46 run: process (sigf, sigg) begin

47 sigmixer <= ((not siga) and sigg) or ((not sigf) and siga);
48 end process run;
49
50
51 end circmixer arc;
52

16

