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1 Task

The plant consists of a permanent magnet dc electric servo motor/gearbox
with angular position feedback. Open loop test have shown that the re-
lationship between applied voltage (volts) and resultant rotational speed
(rad/sec) can be described by the transfer function.

G(s) =
1

s + 16
(1)

The controller which should be designed has to meet the following perfor-
mance criteria:

• Steady state error to a step change in desired position = zero

• Maximum percentage overshoot to a step change in desired position
= 4.4

• Maximum settling time allowed following a step change in desired po-
sition = 0.25sec

The output of the Plants Transfer function is in (rad/sec) but the motor
gives only an angular posiition as feedback therefore the Transferfunction
(equation 1) must be Integrated. That means in Laplace domain it must be
multiplicated with 1

s .

G(s) =
1

s(s + 16)
=

1

s2 + 16s
(2)

2 Solution

2.1 State space model

G(s) =
Y (s)

U(s)
=

1

s2 + 16s
(3)

Y (s)s2 + Y (s)16s = U(s) (4)

in the time domain

ÿ + 16ẏ(t) = u(t) (5)

States will are defined as follwing:

y1(t) = y(t) → ẏ1(t) = ẏ(t) = y2 (6)

y2(t) = ẏ(t) → ẏ2 = ÿ(t) (7)

with the states (eq 7) equation 5 can be written as
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ẏ2 + 16y2(t) = u(t) (8)

ẏ2 = −16y2(t) + u(t) (9)

In matrix form
[

ẏ1(t)
ẏ2(t)

]

=

[

0 1
0 −16

] [

y1(t)
y2(t)

]

+

[

0
1

]

u(t) (10)

y(t) = [1 0]

[

y1(t)
y2(t)

]

(11)

This gives the following results for the system matrixes

A =

[

0 1
0 −16

]

(12)

B =

[

0
1

]

(13)

C = [1 0] (14)

2.2 Controllability

The controllability matrix CM must be derived to check the system for
controllability

CM = [A AB] =

[

0 1
1 −16

]

→ det 66= 0

Because of CM is a requllar matrix the system is controllable. This means
it is possible to build a controller for this system.

2.3 Controller design

The percentage overshoot for a step change input is given as

P.O. = 100e
−π ζ√

1−ζ2 (15)

ζ =
− ln(P.O.

100
)

√

π2 + ln(P.O.
100

)2
(16)

And the settling time can be derived by

Ts =
4

ζωn
(17)

ωn =
4

Tsζ
(18)

2



With equation 16 and 18 both values of ωn and ζ can be derived as
following.

ζ = 0.705 ωn = 22.7

Using the standard form of a second order system ( eq. 19) the desired
pole positions for the above derive ζ and ωn can be calcuated as following
(eq, 20).

G =
ω2

n

s2 + 2ζωns + ω2
n

(19)

0 = s2 + 2ζωns + ω2

n

→ s1/2 = −ζωn ± sqrt(ζωn)2 − ω2

n (20)

The desired Pole locations for the controller are −16± 16.1j.

The system is already in canonical form therefor is it possible to use the
pole placement techniques to design a controller with the desired pole loca-
tions .

CLCE = (s + 16− 16.1j)(s + 16 + 16.1j) = s2 + 32s + 512 (21)

The Feedback Controller will have the following transfer function.

w(t) = −Fx(t) + r(t) (22)
[

w1(t)
w2(t)

]

= −
[

F1 F2

]

[

x1(t)
x2(t)

]

+ r(t) (23)

The closed Loop matrix

ACL = A−BF =

[

0 1
−F1 −16− F2

]

can be derived with

det (sI − (A−BF )) = s2 − (−16− F2)s− (−F1)

= s2 + (16 + F2)s + F1) (24)

(25)

The equation 24 must be equal equation 21

s2 + (16 + F2)s + F1) = s2 + 32s + 512

16 + F2 = 32 → F2 = 16 F1 = 512
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Therefore the resulting transfer function for the controller is

[

w1(t)
w2(t)

]

= −
[

512 16
]

[

x1(t)
x2(t)

]

+ r(t)

and the desired closed loop matrix

ACL = A−BF =

[

0 1
−512 −32

]

In figure 1 the step response of the model is schown. As it can be seen
the performance criteria met.

Figure 1: Step response

2.4 Observability

If the system is observable the observability matrix is regular

OM =

[

C

CA

]

=

[

1 0
0 1

]

→ det(OM) 66= 0

Because the observability matrix is regular the system is observable.
This means it exists a path between each state and the output. Therefore
it it is possible to estimate a state variable of the system.
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2.5 Observer construction

The transfer function of the observer will be

ẋ∗(t) = A∗x∗(t) + B∗u∗(t)

ẏ∗(t) = C∗x∗(t)

where

x∗ =

[

x(t)
x̂(t)

]

, A∗ =

[

A 0
LC A− LC

]

, B∗ =

[

B

B

]

, C∗ =
[

C 0
]

with the initial condition

x∗(0) =

[

x(0)
x̂(0)

]

The Observer should have a faste dynamic as the system itself. Because
we have choosen a maximum settling time for the system of 0.25sec we
choose 0.1sec for the observer. And the same maximum overshoot as the
system.

ωn = 56.7 ζ = 0.7

Therefore the desired pole locations for the observer are −40± 40j.

CEobs = S2 + 80s + 3128.5

and a L =

[

64
2176

]

is derived.

ẋ∗(t) =









0 1 0 0
0 −16 0 0
64 0 −64 1

2176 0 −2176 −16









x∗(t) +









0
1
0
1









u∗(t)

ẏ∗(t) =
[

1 0 0 0
]

x∗(t)

The modeled system (simulink) is shown in figure 2. In figure 3 is the
response of the observer shown.
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Figure 2: Simulink model

Figure 3: Step response - observer
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